Sitede Ara

Yazar :
A. M. Marangoz, S. Karakış, M. Oruç, G. Büyüksalih

Özet :
Klasik piksel tabanlı yöntemler, sadece pikselin gri değerine dayalı olarak detay çıkarımını yürütürler. Bu nedenle sadece spektral bilgi sınıflandırma aşamasında kullanılırlar. Bu durum, ancak belirli bazı özelliklerin çıkarılmasıyla daha da kötüleşir. Yukarıda bahsedilen sınırlamayı ortadan kaldırmak için nesne-tabanlı görüntü analizi uygulanır. Burada spektral değerler, şekil ve doku gibi değişik nesne özelliklerinin geniş spektrumunun tamamlanmasını sağlayan bulanık mantığa dayanmaktadır. Bu çalışmada, yüksek çözünürlüklü IKONOS pan-sharpened görüntüsü kullanılarak, öncelikle segmentlere ayrılan ve daha sonra spektral, uzaysal ve yapısal bilgileri kullanıp sınıflandırılmış, bina ve yolların çıkarımı gösterilmiştir. Bahsedilen algoritmalar, eCognition V4.0 yazılımı altında gerçekleştirilmiştir. Test alanı olarak, Karadeniz sahili boyunca inişli çıkışlı topografik özellik gösteren Zonguldak şehri sanayi bölgesi seçilmiştir.Otomatik detay çıkarımından elde edilen sonuç verileri, mevcut büyük ölçekli kadastral haritalar, sayısal yükseklik modelleri (SYM), hava fotoğrafları vb. değişik referans verileri ile birlikte bir coğrafi bilgi sistemi ortamına entegre edilebilir. 

Anahtar Kelimeler :
IKONOS uydusu, pan-sharpened görüntü, segmentasyon, nesne-tabanlı sınıflandırma, coğrafi bilgi sistemi.

Kaynak :

Dosyayı İndir